Os efeitos da ingestão aguda de cerveja na recuperação da variabilidade não linear da frequência cardíaca após o exercício: um teste randomizado, crossover e controlado

  • Yasmim M. de Moraes Pontes Physiological and Collective Sciences Nucleus, School of Juazeiro do Norte, Juazeiro do Norte-CE, Brazil.
  • Cicero Jonas R. Benjamim Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo-FMRP/USP, Ribeirao Preto-SP, Brazil.
  • Gabriela Augusto Liberalino Physiological and Collective Sciences Nucleus, School of Juazeiro do Norte, Juazeiro do Norte-CE, Brazil.
  • Andrey Porto UNESP
  • David M. Garner Center for the Study of the Autonomic Nervous System-CESNA, UNESP, Marilia-SP, Brazil; Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, United Kingdom.
  • Vitor E. Valenti Center for the Study of the Autonomic Nervous System-CESNA, UNESP, Marilia-SP, Brazil.
Palavras-chave: Cerveja, Sistema nervoso autónomo, Sistema cardiovascular, Exercício, Variabilidade do batimento cardíaco

Resumo

Objetivo: Estimamos os efeitos agudos do consumo agudo de cerveja no comportamento não linear da variabilidade da FC (VFC) após o exercício aeróbio submáximo. Equipamentos e métodos: Trata-se de um ensaio transversal, cruzado, randomizado e controlado. Quinze mulheres saudáveis ​​e 17 adultos saudáveis ​​do sexo masculino foram incluídos na amostra final. Os sujeitos realizaram dois protocolos em dois dias randomizados: Água (300 mL) e Cerveja (300 mL). Os sujeitos foram submetidos a 15 minutos sentados em repouso, seguidos de exercício aeróbio em esteira (cinco minutos a 50-55% da FC máxima e 25 minutos 60-65% da FC máxima) e, a seguir, permaneceram sentados por 60 minutos durante a recuperação do exercício. Água ou cerveja foi consumida entre quatro e dez minutos após a cessação do exercício. Resultados: A análise simbólica (0V% e 2LV%), a análise fractal por Detrended Fluctuation Analysis e a Sample Entropy demonstraram uma recuperação tardia nos machos no protocolo de cerveja. No grupo de mulheres, os resultados foram contraditórios entre os índices de análise de fragmentação de RH. O consumo de cerveja por homens após um teste aeróbio submáximo foi capaz de retardar a recuperação do comportamento não linear da VFC.

Referências

-Benjamim, C.J.R.S.; Júnior, F.W.; Figueirêdo M.Í.L.S.; Benjamim, C.J.R.; Cavalcante, T.C.F.; Silva, A.A.M.; Monteiro, L.R.L.; Santana, M.D.R.; Garner, D.M.; Valenti, V.E. Beetroot (Beta Vulgaris L.) Extract Acutely Improves Heart Rate Variability Recovery Following Strength Exercise: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial-Pilot Study. J. Am Coll Nutrition. p. 1-10. 2020. doi: https://doi.org/10.1080/07315724.2020.1774441.

-Billman, G.E.; Huikuri, H.V.; Sacha, J.; Trimmel, K. An introduction to heart rate variability: methodological considerations and clinical applications. Frontiers in Physiology. Vol. 6. Núm. 55. p.01-03. 2015. https://doi.org/10.3389/fphys.2015.00055

-Brunner, S.; Herbel, R.; Drobesch, C.; Peters, A.; Massberg, S.; Kääb, S.; Sinner, M.F. Alcohol consumption, sinus tachycardia, and cardiac arrhythmias at the Munich Octoberfest: results from the Munich Beer Related Electrocardiogram Workup Study (MunichBREW). European Heart Journal. Vol. 38. p.2100-2106. 2017. doi:10.1093/eurheartj/ehx156

-Bustamante-Sánchez, A.; Tornero-Aguilera, J.F.; Fernández-Elías, V.E.; Hormeño-Holgado, A.J.; Dalamitros, A.A.; Clemente-Suárez, V.J. Effect of Stress on Autonomic and Cardiovascular Systems in Military Population: A Systematic Review. Cardiology Research and Practice p.01-09. 2020. https://doi.org/10.1155/2020/7986249

-Caliskan, S.G.; Bilgin, M. Non-linear analysis of heart rate variability for evaluating the acute effects of caffeinated beverages in young adults. Cardiol Young. Vol. 30. Núm. 7. p.1018-1023. 2020. doi:10.1017/S104795112000148

-Camm, A.J. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Vol. 93. p.1043-1065. 1996.

-Castro-Sepulveda, M.; Johannsen, N.; Astudillo, S.; Jorquera, C.; Álvarez, C.; Zbinden-Foncea, H.; Ramírez-Campillo, R. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes. Nutrients. Vol. 8. Núm. 6. p.345. 2016. https://doi.org/10.3390/nu8060345

-Costa, M.D.; Davis, R.B.; Goldberger, A.L. Heart Rate Fragmentation: A Symbolic Dynamical Approach. Frontiers in Physiology. Vol. 8. p.827. 2017. doi: 10.3389/fphys.2017.00827.

-Dázio, E.M.R.; Zago, M.M.F.; Fava, S.M.C.L. Uso de álcool e outras drogas entre universitários do sexo masculino e seus significados. Rev. Esc. Enfermagem da USP. Vol. 50. Núm. 5. p. 786-792. 2016.

-Gomes, R.L.; Vanderlei, L.C.; Garner, D.M.; Santana, M.D.; Abreu, L.C.; Valenti, V.E. Poincaré plot analysis of ultra-short-term heart rate variability during recovery from exercise in physically active men. J Sports Med Phys Fitness. Vol. 58. Núm. 7-8. p.998-1005. 2018. doi: 10.23736/S0022-4707.17.06922-5.

-Gonzaga, L.A.; Vanderlei, L.C.M.; Gomes, R.L.; Valenti, V.E. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: A crossover study. Sci Rep. Vol. 7. Núm. 1. p.14091. 2017. DOI: 10.1038/s41598-017-14540-4.

-Julian, T.H.; Syeed, R.; Glascow, N.; Zis, P. Alcohol‑induced autonomic dysfunction: a systematic review. Clinical Autonomic Research. Vol. 30. p.29-41. 2020. https://doi.org/10.1007/s10286-019-00618-8

-Kumar, D.M.; Kumar, P.; Sudarshan, B.G.; Yadhuraj, S.R. A study on impact of alcohol among young indian population using hrv analysis. International Journal of Computer Science, Engineering and Information Technology. Vol. 4. Núm. 4. p.55-65. 2014. DOI: 10.5121/ijcseit.2014.4406

-Laborde, S.; Mosley, E.; Thayer, J.F. Heart rate variability and cardiac vagal tone in psychophysiological research - recommendations for experiment planning, data analysis, and data reporting. Front Psychol. Vol. 8. p.213. 2017. DOI: 10.3389/fpsyg.2017.00213

-Licaj, J. Alcohol consumption over time and mortality in the Swedish Women’s Lifestyle and Health cohort. BMJ Open. Vol. 6. Núm. 11. p. 1-10. 2014.

-Maestri, R.; Pinna, G.D.; Balocchi, R.; D'Addio, G.; Ferrario, M.; Porta, A.; Sassi, R.; Signorini, M.G.; La Rovere, M.T. Clinical correlates of non-linear indices of heart rate variability in chronic heart failure patients. Biomedizinische Tech. Vol. 51. Núm. 4. p.220-223. 2006. DOI: 10.1515/bmt.2006.041.

-McManus, D.D.; Yin, X.; Gladstone, R.; Vittinghoff, E.; Vasan, R.S.; Larson, M.G.; Benjamin, E.J.; Marcus, G.M. Alcohol consumption, left atrial diameter and atrial fibrillation. Journal of the American heart association. Vol. 8. Núm. 9. p. 1-9. 2016.

-Molina-Hidalgo, C.; De-la-O, A.; Jurado-Fasoli, L.; Amaro-Gahete, F.J.; Castillo, M.J. Beer or Ethanol Effects on the Body Composition Response to High-Intensity Interval Training. The BEER-HIIT Study. Nutrients. Vol. 23. Núm.11. Núm. 4. p.909. 2019.

-Mouton, A.J.; El Hajj, E.C.; Ninh, V.K.; Siggins, R.W.; Gardner, J.D. Inflammatory cardiac fibroblast phenotype underlies chronic alcohol-induced cardiac atrophy and dysfunction. Life Sciences. Vol. 245. p.117-330. 2020. http://dx.doi.org/10.1016/j.lfs.2020.117330

-Peçanha, T.; Bartels, R.; Brito, L.C.; Paula-Ribeiro, M.; Oliveira, R.S.; Goldberger, J.J. Methods of assessment of the post-exercise cardiac autonomic recovery: A methodological review. Int J Cardiol. Vol. 15. Núm. 227. p.795-802. 2017. DOI: 10.1016/j.ijcard.2016.10.057.

-Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-Ruscone, T. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. Am J Physiol Heart Circ Physiol. Vol. 293. p.H702-H708. 2007. doi:10.1152/ajpheart.00006.2007

-Quintana, D.S. Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology. Vol. 54. Núm. 3. p.344-349. 2017. DOI: 10.1111/psyp.12798.

-Ralesvki, E.; Petrakis, I.; Altemus, M. Heart rate variabilty in alcohol use: A review. Pharmacology, Biochemistry and Behavior. Vol. 176. p.83-92. 2019. Doi: 10.1016/j.pbb.2018.12.003.

-Richman, J.S.; Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. Vol. 278. p.2039-2049. 2000.

-Rzewnicki, R.; Vanden Auweele, Y.; Bourdeaudhuij, I. Addressing overreporting on the international physical activity questionnaire (ipaq) telephone survey with a population sample. Public Health Nutr. Vol. 6. Núm. 3. p.299-305. 2003. DOI: 10.1079/PHN2002427.

-Santana, M.D.R.; Kliszczewicz, B.; Vanderlei, F.M.; Monteiro, L.R.L.; Martiniano, E.C.; Moraes, Y.M.; Mangueira, L.B.; Alcantara, G.C.; Silva, J.R.A.; Benjamim, C.J.R.; Oliveira, F.R.; Valenti, V.E. Autonomic responses induced by aerobic submaximal exercise in obese and overweight adolescents. Cardiology in the Young. Vol. 29. p.169-173. 2019. doi: 10.1017/ S1047951118002007

-Santana, M.D.R.; Pita Neto, I.C.; Martiniano, E.C.; Monteiro, L.R.L.; Ramos, J.L.S.; Garner, D.M.; Valenti, V.E.; Abreu, L.C. Non-linear indices of heart rate variability during endodontic treatment. Brazilian Oral Research. Vol. 30. Núm. 1. p.01-08. 2017.https://doi.org/10.1590/1807-3107BOR-2016.vol30.0029

-Shirpoor, E.H.A.; Kheradmand, F.; Alizadeh, M.; Gharalari, F.H. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract. Anatol J Cardiol. Vol. 19. p.19-26. 2018. doi:10.14744/AnatolJCardiol.2017.8079.

-Silva, L.E.V.; Fazan Junior, R.; Marin-Neto, J.Á. PyBioS: A freeware computer software for analysis of cardiovascular signals. Computer Methods and Programs in Biomedicine. Vol. 197. p.105718. 2020. https://doi.org/10.1016/j.cmpb.2020.105718.

-Spaak, J.; Tomlinson, G.; McGowan, C.L.; Soleas, G.J.; Morris, B.L.; Picton, P.; Notarius, C.F.; Floras, J.S. Dose-related effects of red wine and alcohol on heart rate variability. American Journal of Physiology-Heart and Circulatory Physiology. Vol. 298. Núm. 6. 2010.

-Tirapelli, C.R.; Leone, A.F.; Yogi, A.; Tostes, R.C.; Lanchote, V.L.; Uyemura, S.A.; Resstel, L.B.; Corrêa, F.M.; Padovan, C.M.; Oliveira, A.M.; Coelho, E.B. Ethanol consumption increases blood pressure and alters the responsiveness of the mesenteric vasculature in rats. J Pharm Pharmacol. Vol. 60. Núm. 3. p.331-41. 2008. doi: 10.1211/jpp.60.3.0008. PMID: 18284813.

-Van de Borne, P.; Mark, A.L.; Montano, N.; Mion, D.; Somers, V.K. Effects of Alcohol on Sympathetic Activity, Hemodynamics, and Chemoreflex Sensitivity. Hypertension. Vol. 29. Núm. 6. p.1278-1283. 1997. Doi: 10.1161/01.hyp.29.6.1278

-Wilklund, U.; Karlsson, M.; Oström, M.; Messner, T. Influence of energy drinks and alcohol on post‐exercise heart rate recovery and heart rate variability. Clinical Physiology and Functional Imaging. Vol. 29. Núm. 1. p.74-80. 2009. doi: 10.1111/j.1475-097X.2008.00837.x

Publicado
2022-11-15
Como Citar
Pontes, Y. M. de M., Benjamim, C. J. R., Liberalino, G. A., Porto, A., Garner, D. M., & Valenti, V. E. (2022). Os efeitos da ingestão aguda de cerveja na recuperação da variabilidade não linear da frequência cardíaca após o exercício: um teste randomizado, crossover e controlado. RBNE - Revista Brasileira De Nutrição Esportiva, 16(100), 383-395. Recuperado de https://www.rbne.com.br/index.php/rbne/article/view/2039
Seção
Artigos Científicos - Original