A suplementação de cafeí­na pode fazer corredores correrem mais e melhorar estratégia de ritmo

  • Elias de França GEPAME - Metabolism of Exercise Research and Study Group - São Judas University
  • Ana Paula Xavier Laboratory of Exercise and Movement Sciences, Mackenzie Presbiterian University, São Paulo, SP, Brazil
  • Igor Roberto Dias GEPAME - Metabolism of Exercise Research and Study Group - São Judas University
  • Romeu Rodrigues de Souza Professor, Post-graduate Course on Physical Education, São Judas Tadeu University, São Paulo, Brazil
  • Sônia Cavalcanti Corrêa Laboratory of Exercise and Movement Sciences, Mackenzie Presbiterian University, São Paulo, SP, Brazil
  • Marco Antônio Rabelo da Silva Faculty of Sport Sciences and Physical Education, University of Coimbra, Portugal
  • Cezar Antônio Rabelo da Silva School of Integrative and Global Majors (SIGMA), University of Tsukuba, Japan
  • Raul Agostinho Simões Martins Faculty of Sport Sciences and Physical Education, University of Coimbra, Portugal
  • Vinicius Barroso Hirota Laboratory of Exercise and Movement Sciences, Mackenzie Presbiterian University, São Paulo, SP, Brazil
  • Ronaldo Vagner Thomatieli dos Santos Centro de Estudos em Psicobiologia e Exercí­cio (CEPE), São Paulo, SP, Brasil
  • Érico Chagas Caperuto GEPAME - Metabolism of exercise Research and Study group - São Judas University
Palavras-chave: Tempo de Exaustão, Estratégia de Ritmo, Auxílio Ergogênico, Percepção Subjetiva de Esforço

Resumo

A cafeí­na pode estimular o sistema nervoso central e aumentar a tolerância ao exercí­cio por meio de mudanças na percepção subjetiva de esforço (PSE), isso pode mudar a estratégia de ritmo (ER) durante uma corrida. Nosso objetivo foi verificar se a suplementação de cafeí­na promove mudanças na ER durante um teste de corrida de laboratório (TCL). De modo duplo-cego, cruzado, randomizado e contrabalançado, quinze homens saudáveis (idade: 24 ± 4,4 anos, VO2max. 53 ± 5 ml.Kg-1.min-1) ingeriram 6 mg/kg-1 de cafeí­na ou placebo, 60 minutos antes do TCL. O TCL consistiu de séries de três minutos (velocidade fixada à 1 km/h acima do "Onset Blood Lactate Accumulation") até fadiga volicional; O Intervalo de Tempo de Descanso (ITD) entre as séries foi escolhido pelos participantes no primeiro teste (entre 30 a 60s). PSE, frequência cardí­aca (FC) e lactato ([La]p) foram coletados em repouso, imediatamente após cada série e ao final do teste. O tempo de exaustão foi maior na situação cafeí­na (p= 0,014); o ITD foi significativamente menor na situação cafeí­na (p= 0,048), isso fez diminuir significativamente o tempo para realizar uma mesma distância (p= 0,034). A FC e [La]p foram semelhantes para ambas as condições (p= 0,252, p= 0,129, respectivamente). Apesar da semelhança da PSE ao longo do teste (p= 0,380), na situação cafeí­na não houve um aumento abrupto ao longo do teste como ocorreu na situação placebo. A suplementação de cafeí­na pode influenciar positivamente a ER durante uma corrida, além de aumentar a capacidade de correr mais (no mesmo evento).

Referências

-Astorino, T. A.; et al. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiology & Behavior. Vol. 106. Núm. 2. p. 211-217. 2012.

-Black, M. I.; et al. Self-pacing increases critical power and improves performance during severe-intensity exercise. Applied Physiology, Nutrition, and Metabolism. 2015. Available in: <http://dx.doi.org/10.1139/apnm-2014-0442>.

-Borg, G. A.; Noble, B. J. Perceived exertion. Exercise and sport sciences reviews.Vol. 2. Núm. 1. p. 131-154. 1974.

-Burdan, F. Chapter 90 - Pharmacology of Caffeine: The Main Active Compound of Coffee. In: Preedy, V. R. (Ed.). Coffee in Health and Disease Prevention. Academic Press. 2015. p. 823-829.

-Cheng, B.; et al. A New Approach for the Determination of Ventilatory and Lactate Thresholds. Int J Sports Med. Vol. 13. Núm. 7. p. 518-522. 1992.

-Currell, K.; Jeukendrup, A. E. Validity, reliability and sensitivity of measures of sporting performance. Sports medicine. Vol. 38. Núm. 4. p. 297-316. 2008.

-De França, E.; et al. Data reproducibility of pace strategy in a laboratory test run. Data in brief. Vol. 7. p. 946-950. 2016.

-De Koning, J. J.; et al. Regulation of Pacing Strategy during Athletic Competition. PLoS ONE. Vol. 6. Núm. 1. p. e15863. 2011.

-De Morree, H. M.; Klein, C.; Marcora, S. M. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. Journal of Applied Physiology. Vol. 117. Núm. 12. p. 1514-1523. 2014.

-De Morree, H. M.; Marcora, S. M. Psychobiology of Perceived Effort During Physical Tasks. In: (Ed.). Handbook of Biobehavioral Approaches to Self-Regulation: Springer. 2015. p. 255-270.

-Denadai, B. S.; Gomide, E. B. G.; Greco, C. C. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players. The Journal of Strength & Conditioning Research. Vol. 19. Núm. 2. p. 364-368. 2005.

-Doherty, M.; Smith, P. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a metaâ€analysis. Scandinavian journal of medicine & science in sports. Vol. 15. Núm. 2. p. 69-78. 2005.

-Donghia, P.S.; Xavier, A. P.; De França, E.; Santana, J. O.; Madureira, D.; Correa, S. C.; De Lira, F. S.; Caperuto, E. C. Caffeine supplementation (6mg/kg) improves total time to exhaustion in a fixed speed protocol, without physiological alterations in runners. Revista Brasileira de Prescrição e Fisiologia do Exercício. Vol. 10. Núm. 58. p. 214-219. 2016. Available in: <http://www.rbpfex.com.br/index.php/rbpfex/article/view/902/779>

-Fernández-Dueñas, V.; et al. Uncovering caffeine’s adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS chemical biology. 2014.

-Franke, A. G.; Bagusat, C. Chapter 80 - Use of Caffeine for Cognitive Enhancement. In: Preedy, V. R. (Ed.). Coffee in Health and Disease Prevention. San Diego. Academic Press. 2015. p. 721-727.

-Fritz, C. O.; Morris, P. E.; Richler, J. J. Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology: General. Vol. 141. Núm. 1. p. 2. 2012.

-Ganio, M. S.; et al. Effect of caffeine on sport-specific endurance performance: a systematic review. The Journal of Strength & Conditioning Research. Vol. 23. Núm. 1. p. 315-324. 2009.

-Glaister, M.; et al. Caffeine supplementation and peak anaerobic power output. European Journal of Sport Science. p. 1-7. 2014. Disponível em: <http://dx.doi.org/10.1080/17461391.2014.962619>

-Goldstein, E. R.; et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. Vol. 7. Núm. 1. p. 5. 2010.

-Grassi, B.; Rossiter, H. B.; Zoladz, J. A. Skeletal Muscle Fatigue and Decreased Efficiency: Two Sides of the Same Coin? Exercise and sport sciences reviews. 2015.

-Heyward, V. H.; Gibson, A. Assessing Cardiorespiratory Fitness hayward, in Heyward, V.H.; Gibson, A. In: (Ed.). Advanced Fitness Assessment and Exercise Prescription 7th Edition: Human Kinetics. 2014. p. 79-120.

-Huang, Z.L.; et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. Vol. 8. Núm. 7. p. 858-859. 2005.

-Jackson, A. S.; Pollock, M. L. Generalized equations for predicting body density of men. British Journal of Nutrition. Vol. 40. Núm. 3. p. 497-504. 1978.

-Kay, D.; et al. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. European journal of applied physiology. Vol. 84. Núm. 1-2. p. 115-121. 2001.

-Ledent, C.; et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature. Vol. 388. Núm. 6643. p. 674-678 .1997.

-Macbeth, G.; Razumiejczyk, E.; Ledesma, R. D. Cliff's Delta Calculator: A non-parametric effect size program for two groups of observations. Universitas Psychologica. Vol. 10. Núm. 2. p. 545-555. 2011.

-Marcora, S. Counterpoint: Afferent Feedback From Fatigued Locomotor Muscles is not an Important Determinant of Endurance Exercise Performance. Journal of Applied Physiology. Vol. 108. Núm. 2. p. 454-456. 2010.

-Marcora, S. M.; Bosio, A.; De Morree, H. M. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. Vol. 294. Núm. 3. p. R874-R883. 2008.

-Marino, F. E. If only I were paramecium too! A case for the complex, intelligent system of anticipatory regulation in fatigue. Fatigue: Biomedicine, Health & Behavior. Vol. 2. Núm. 4. p. 185-201. 2014.

-Meeusen, R. Exercise, Nutrition and the Brain. Sports Medicine. Vol. 44. Núm. 1. p. 47-56. 2014.

-Millet, G. Y. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? Sports Medicine. Vol. 41. Núm. 6. p. 489-506. 2011.

-Minett, G. M.; Duffield, R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Frontiers in physiology. Vol. 5. 2014.

-Morita, S.; et al. Plasma lactate concentration as an indicator of plasma caffeine concentration in acute caffeine poisoning. Acute Medicine & Surgery. Vol. 1. Núm. 3. p. 159-162. 2014.

-Penteado, R.; et al. Physiological responses at critical running speed during continuous and intermittent exhaustion tests. Science & Sports. Vol. 29. Núm. 6. p. e99-e105. 2014.

-Smith, M. R.; Marcora, S. M.; Coutts, A. J. Mental Fatigue Impairs Intermittent Running Performance. Medicine and science in sports and exercise. 2014.

-Spriet, L. L. Exercise and sport performance with low doses of caffeine. Sports medicine. Vol. 44. Núm. 2. p. 175-184. 2014.

-Targum, S. D.; et al. Fatigue across the CNS spectrum: a clinical review. Fatigue: Biomedicine, Health & Behavior. Vol. 2. Núm. 4. p. 231-246. 2014.

-Teekachunhatean, S.; et al. Pharmacokinetics of Caffeine following a Single Administration of Coffee Enema versus Oral Coffee Consumption in Healthy Male Subjects. ISRN Pharmacology. Vol. 20. Núm. 13. p. 7. 2013. Available in: <http://dx.doi.org/10.1155/2013/147238>.

-Warren, G. L.; et al. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. Vol. 42. Núm. 7. p. 1375-1387. 2010.

-Wright, R. A. Refining the Prediction of Effort: Brehm's Distinction between Potential Motivation and Motivation Intensity. Social and Personality Psychology Compass. Vol. 2. Núm. 2. p. 682-701. 2008.

-Yang, J.-N.; Chen, J.-F.; Fredholm, B. B. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. 2009. p. H1141-H1149. Available in: <http://ajpheart.physiology.org/ajpheart/296/4/H1141.full.pdf>

Publicado
2018-02-06
Como Citar
de França, E., Xavier, A. P., Dias, I. R., de Souza, R. R., Corrêa, S. C., Rabelo da Silva, M. A., Rabelo da Silva, C. A., Martins, R. A. S., Hirota, V. B., dos Santos, R. V. T., & Caperuto, Érico C. (2018). A suplementação de cafeí­na pode fazer corredores correrem mais e melhorar estratégia de ritmo. RBNE - Revista Brasileira De Nutrição Esportiva, 11(67), 813-825. Recuperado de http://www.rbne.com.br/index.php/rbne/article/view/907
Seção
Artigos Científicos - Original