Does carnosine reduce the effects of muscle acidosis during exercise?

  • Victor Araújo Ferreira Matos Universidade Potiguar (UNP)
  • Nailton José Brandão Albuquerque Filho Universidade do Estado do Rio Grande do Norte (UERN)
  • Gleidson Mendes Rebouças Universidade do estado do Rio Grande do Norte (UERN)
  • Thiago Renee Felipe Universidade Potiguar (UNP)
  • Cristiane Clemente de Mello Salgueiro Universidade Potiguar (UNP)
  • Edson Fonseca Pinto Universidade do Estado do Rio Grande do Norte (UERN)
Keywords: Beta-alanine, Intramuscular tamponade, Muscle fatigue, Dietary supplement

Abstract

Carnosine is a dipeptideof beta-alanine and histidine amino acids, being found in most of the muscle tissue. Its synthesis occurs through carnosine synthase enzyme having the beta alanine as a limiting precursor. The most recent works have shown that increased levels of carnosine improves sports performance due to reducing of decrease in pH intramuscular during exercise, providing greater buffering capacity of hydrogen ions (H +). The aim of this review was to analyze works related to the effects of chronic beta-alanine supplementation on exercise performance recent years. The search strategy was done through consultation with PubMed and Trip Database data using the combined descriptors “carnosine”, “beta-alanine” and “exercise” in articles published between January 2007 and December 2013. We included in this analysis just original articles and articles that evaluated unhealthy sample, beta-alanine supplementation associated with other substances, as well as these, dissertations and reviews were excluded. Based on information meeting, we believe that beta-alanine supplementation can be considered an effective strategy in increasing carnosine levels, reflecting improved performance through increased time to exhaustion and delayed on neuromuscular fatigue threshold, presenting better effects in high intensity activities.

References

-Abe, H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Moscow). Vol. 65. Num. 7. 2000. p. 757-765.

-Allen, D.G.; Lamb, G.; Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews. Vol. 88. Num. 1. 2008. p. 287-332.

-Artioli, G.G.; Gualano, B.; Smith, A.; Stout J.; Lancha, A.H.Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Medicine and Science in Sports and Exercise. Vol. 42. Num. 6. 2010. p. 1162-1173.

-Baguet, A.; Bourgois, J.; Vanhee, L; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. Journal of Applied Physiology. Vol. 109. Num. 4. 2010a. p. 1096-1101.

-Baguet, A.; Koppo, K.; Pottie, A.; Derave, W. β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. European Journal of Applied Physiology. Vol. 108. Num. 3. 2010b. p. 495-503.

-Bailey, S.; Davis, J.; Ahlborn, E. Effect of increased brain serotonergic activity on endurance performance in the rat. Acta Physiologica Scandinavica. Vol. 145. Num. 1. 1992. p. 75-76.

-Bezkorovainy, A. Carnosine, carnitine, and Vladimir Gulevich. Journal of Chemical Education. Vol. 51. Num. 10. 1974. p. 652.

-Bikov, A.; Galffy, G.; Tamasi L.; Bartusek, D.; Antus, B.; Losonczy, G.; Horvath, I. Exhaled breath condensate pH decreases during exercise‐induced bronchoconstriction. Respirology. Vol. 19. Num. 4. 2014. p. 563-569.

-Boldyrev, A.A. Carnosine and oxidative stress in cells and tissues. Moscow. Nova Publishers. 2007.

-Costill, D.L.; Wilmore, J.H.; Kenney, W.L. Physiology of sport and exercise. 5th Edition. Champaign. Human Kinetics. 2012.

-Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: a review of the current literature. Nutrients. Vol. 2. Num. 1. 2010. p. 75-98.

-Del Favero, S.; Roschel, H.; Solis, M.Y.; Hayashi, A.P.; Artioli, G.G.; Otaduy, M.C.; Benatti, F.B.; Harris, R.C.; Wise, J.A.; Leite, C.C.; Pereira, R.M.; de Sá-Pinto, A.L.; Lancha-Junior, A.H.; Gualano, B. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity. Amino Acids. Vol. 43. Num. 1. 2012. p. 49-56.

-Derave, W.; Everaert, I.; Beeckman, S.; Baquet, A. Muscle carnosine metabolism and β-alanine supplementation in relation to exercise and training. Sports Medicine. Vol. 40. Num. 3. 2010. p. 247-263.

-Derave, W. Ozdemir, M.S.; Harris, R.C.; Pottier, A.; Reyngoudt, H.; Koppo, K.; Wise, J.A.; Achten, E. β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology. Vol. 103. Num. 5. 2007. p. 1736-1743.

-Dunford, M.; Doyle, J. Nutrition for sport and exercise. 2nd Edition. Stamford. Cengage Learning, 2011.

-Fitts, R.H. Cellular mechanisms of muscle fatigue. Physiological Reviews. Vol. 74. Num. 1. 1994. p. 49-94.

-Harris, R.C.; Marlin, D.J.; Dunnett, M.; Snow, D.H.; Hultman, E. Muscle buffering capacity and dipeptide content in the thoroughbred horse, greyhound dog and man. Comparative Biochemistry and Physiology. Vol. 97. Num. 2. 1990. p. 249-251.

-Harris, R.C.; Tallon, M.J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H.J.; Fallowfield, J.L.; Hill, C.A.; Sale, C.; Wise, J.A. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. Vol. 30. Num. 3. 2006. p. 279-289.

-Hill, C.; Harris, R.C.; Kim, H.J.; Harris, B.D.; Sale, C.; Boobis, L.H.; Kim, C.K.; Wise, J.A. Influence of β-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. Vol. 32. Num. 2. 2007. p. 225-233.

-Jordan, T.; Lukaszuk, J.; Misic, M.; Umoren, J. Effect of beta-alanine supplementation on the onset of blood lactate accumulation (OBLA) during treadmill running: Pre/post 2 treatment experimental design. Journal of the International Society of Sports Nutrition. Vol. 7. Num. 1. 2010. p. 20-27.

-Kendrick, I.P.; Harris, R.C.; Kim, H.J.; Kim, C.K.; Dang, V.H.; Lam,T.Q.; Bui, T.T.; Smith, M.; Wise, J.A. The effects of 10 weeks of resistance training combined with beta-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino Acids. Vol. 34. Num. 4. 2008. p. 547-554.

-Lo Cascio, L.; Latshang, T.D.; Kohler, M.; Fehr, T.; Bloch, K.E. Severe Metabolic Acidosis in Adult Patients with Duchenne Muscular Dystrophy. Respiration. Vol. 87, n. 6, p. 499-503, 2014.

-McArdle, W.D.; Katch, F.I.; Katch, V.L. Fisiologia do exercício: nutrição, energia e desempenho humano. 7ª Edição. Rio de Janeiro. Guanabara Koogan. 2011.

-Sale, C.; Hill, C.A.; Ponte, J.; Harris, R.C. β-alanine supplementation improves isometric endurance of the knee extensor muscles. Journal of the International Society of Sports Nutrition. Vol. 9. Num. 1. 2012. p. 1-7.

-Sale, C.; Saunders, B.; Harris, R.C. Effect of beta-alanine supplementation on muscle carnosine concentrations and exercise performance. Amino Acids. Vol. 39. Num. 2. 2010. p. 321-333.

-Smith, A.E.; Walter, A.A.; Graef, J.L.; Kendall, K.L.; Moon, J.R.; Lockwood, C.M.; Fukuda, D.H.; Beck, T.W.; Cramer, J.T.; Stout, J.R. Effects of β-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. Journal of the International Society of Sports Nutrition. Vol. 6. Num. 1. 2009. p. 1-9.

-Stout, J.R.; Cramer, J.T.; Zoeller, R.F.; Torok, D.; Costa P.; Hoffman, J.R.; Harris, R.C; O’Kroy, J. Effects of β-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. Vol. 32. Num. 3. 2007. p. 381-386.

-Stout, J.R. Graves, B.S.; Smith A.E.; Hartman, M.J.; Cramer, J.T.; Beck, T.W.; Harris, R.C. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): a double-blind randomized study. Journal of the International Society of Sports Nutrition. Vol. 5. Num. 1. 2008. p. 1-6.

-Tallon, M.J.; Harris, R.C; Boobis, L.H.; Fallowfield, J.L.; Wise, J.A. The carnosine content of vastus lateralis is elevated in resistance-trained bodybuilders. The Journal of Strength & Conditioning Research. Vol. 19. Num. 4. 2005. p. 725-729.

-Van Thienen, R.; Van Proeyen, K.; Vanden Eynde, B.; Puype, J.; Lefere, T.; Hespel, P. Beta-alanine improves sprint performance in endurance cycling. Medicine and Science in Sports and Exercise. Vol. 41. Num. 4. 2009. p. 898-903.

-Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. Vol. 40. Num. 5. 2011. p. 1271-1296.

-Wasserman, K.; Cox, T.A.; Sietsema, K.E. Ventilatory regulation of arterial H(+) (pH) during exercise. Respiratory Physiology & Neurobiology. Vol. 190. 2014. p. 142-148.

Published
2015-04-03
How to Cite
Matos, V. A. F., Albuquerque Filho, N. J. B., Rebouças, G. M., Felipe, T. R., Salgueiro, C. C. de M., & Pinto, E. F. (2015). Does carnosine reduce the effects of muscle acidosis during exercise?. RBNE - Brazilian Journal of Sports Nutrition, 9(50), 164-171. Retrieved from https://www.rbne.com.br/index.php/rbne/article/view/526
Section
Scientific Articles - Original